

DCI-003-1164001

Seat No.

M. Sc. (Sem. IV) Examination

July - 2022

Mathematics: CMT-4001

(Linear Algebra)

Faculty Code: 003

Subject Code: 1164001

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions: (1) There are total five questions.

- (2) All questions are mandatory.
- (3) Each question carries equal marks.
- 1 Answer any seven of the following questions:
 - (1) Define with example:
 - (a) Left-invertible linear transformation.
 - (b) Right-invertible linear transformation.
 - (2) Define with example: Characteristic root.
 - (3) Define with example: Nilpotent linear transformation.
 - (4) Define with example : Cyclic subspace with respect to T.
 - (5) Define with example: Basic Jordan block belonging to λ .
 - (6) Define Rational Canonical Form.
 - (7) State Primary Decomposition Theorem.
 - (8) Define with example: Trace of a matrix.
 - (9) Define with example: Bilinear form.
 - (10) Define with example: Secular Equation.
- 2 Answer any two of the following questions:
 - (1) Let V be an n-dimensional vector space over \mathbb{F} and $T \in A_{\mathbb{F}}(V)$. Prove that, T is singular if and only if there exists $v \neq 0$ in V such that T(v) = 0.

- (2) Let \mathbb{F} be a subfield of K. Let $n \in \mathbb{N}$ and $A \in \mathbb{F}_n$. Prove that A is invertible in \mathbb{F}_n if and only if A is invertible in K_n .
- (3) Let V be a finite dimensional vector space over \mathbb{F} and $T, S \in A_{\mathbb{F}}(V)$. Prove that, if S is regular then T and STS^{-1} have the same minimal polynomial.
- 3 Answer the following questions:
 - (1) Let V be a finite dimensional vector space over \mathbb{F} and $T \in A_{\mathbb{F}}(V)$. Prove that, T is regular if and only if T maps V onto V.
 - (2) Let V be a finite dimensional vector space over \mathbb{F} and $T \in A_{\mathbb{F}}(V)$. Let T has all its characteristics roots in \mathbb{F} . Prove that, there exists a basis of V in which the matrix of T is triangular.

OR

- **3** Answer the following questions:
 - (1) Let V be an n-dimensional vector space over $\mathbb F$ and $T \in A_{\mathbb F}(V)$. Let $m_1(T)$ be the matrix of T in the basis $\left\{v_1, v_2, \ldots, v_n\right\}$ and $m_2(T)$ be the matrix of T in the basis $\left\{w_1, w_2, \ldots, w_n\right\}$ over $\mathbb F$. Prove that, there exists $C \in \mathbb F_n$ such that $m_2(T) = Cm_1(T)C^{-1}$.
 - (2) Let the matrix $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} \in \mathbb{R}_3$. Prove that, A is nilpotent

and find the invariants of A.

4 Answer the following questions:

(1) Le
$$A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 0 \end{bmatrix} \in \mathbb{R}_3$$
. Determine the Jordan form of A .

(2) Let $A, B \in \mathbb{F}_n$. If A' denotes the transpose of A, then prove that,

(i)
$$(A')' = A$$

(ii)
$$(A+B)' = A' + B'$$

(iii)
$$(AB)' = B'A'$$

- **5** Answer any two of the following questions:
 - (1) Let $A \in \mathbb{F}_n$. If any two rows of A are identical, then prove that, $\det(A) = 0$.
 - (2) Using Crammer's rule find the solutions, in the real field, of the system of equations given below:

$$x+2y+z=3$$
$$2x+3y+z=4$$
$$x-y-z=0$$

- (3) Let V be a finite dimensional inner product space over \mathbb{C} . Let $T \in A_{\mathbb{F}}(V)$. If $\langle T(v), v \rangle = 0$, $\forall v \in V$, then prove that, T = 0.
- (4) Let V be an n-dimensional inner product space over \mathbb{C} . Prove that, T is unitary if and only if $\langle T(u), T(u) \rangle = \langle u, u \rangle$, $\forall u \in V$.